Rechargeable aqueous zinc ion batteries (AZIBs) offer promising potential for large-scale energy storage systems due to their high affordability and safety. However, their practical applications are hindered by the undesired rate capability and cycling stability of the used cathode, attributed to sluggish ions kinetics during charge-discharge process. Herein, we propose an electric field balancing strategy to regulate the electrolyte ions behavior by constructing a ferroelectric interface on the cathode surface using a prototypical of MnO2-based cathode. An appropriate thickness coating of ferroelectric materials coating (i.e., β-PVDF) on the MnO2 surface is theoretically and experimentally demonstrated to enhance the ion kinetics due to the optimized electrical distribution during electrochemical operations. Further comprehensive electrochemical mechanism studies reveal that the ferroelectric interface on the MnO2@β-PVDF not only promotes the diffusion of Zn2+ but also reduces the electrochemical overpotential (17.6 mV), resulting in improved electrochemical reversibility and capacity performance. The resultant MnO2@β-PVDF cathode exhibits the highest capacity of 277.6 mAh g-1 (at 0.1 A g-1) and capacity retention of 68.6% after 120 cycles, surpassing both the pristine MnO2 and non-ferroelectric materials coated MnO2 electrodes. This success presents a new approach to enhance the overall electrochemical performance of the cathodes for the practical application of AZIBs.
Keywords: Aqueous zinc ion batteries; Capacity degradation; Diffusion kinetics; Electrochemical overpotential; Ferroelectric effect.
Copyright © 2023 Elsevier Inc. All rights reserved.