Effect of plant-derived antimicrobials, eugenol, carvacrol, and β-resorcylic acid against Salmonella on organic chicken wings and carcasses

Poult Sci. 2023 Oct;102(10):102886. doi: 10.1016/j.psj.2023.102886. Epub 2023 Jun 19.

Abstract

Organic poultry constitutes a sizeable segment of the American organic commodities market. However, processors have limited strategies that are safe, effective, and approved for improving the microbiological safety of products. In this study, the efficacy of 3 plant-derived antimicrobials (PDAs), eugenol (EG), carvacrol (CR), and β-resorcylic acid (BR) was evaluated against Salmonella on organic chicken wings and carcasses. Wings inoculated with Salmonella (6 log10 CFU/wing) were treated with or without the treatments (BR [0.5%, 1% w/v], EG [0.5%, 1% v/v], CR [0.5%, 1% v/v], chlorine [CL; 200 ppm v/v], or peracetic acid [PA; 200 ppm v/v]) applied for 2 min at 54°C (scalding study) or 30 min at 4°C (chilling study). Homogenates and treatment water were evaluated for surviving Salmonella. Six wings or carcasses per treatment were analyzed in each study. All treatments, except CL and 0.5% BR in the scalding study, yielded significant reductions of Salmonella on wings compared to the positive control (PC-Salmonella inoculated samples not treated with antimicrobials). To follow, carcasses inoculated with Salmonella (higher inoculum [106 CFU/carcass] or lower inoculum [104 CFU/carcass]) and immersed in antimicrobials (CR 1% [v/v] and industry controls [CL {200 ppm}, or PA [200 ppm]) for 30 min at 4°C were stored until analysis. For the higher inoculum study, 1% CR resulted in a 3.9 log10 CFU/g reduction of Salmonella on the carcass on d 0 compared to PC (P < 0.05); however, CL yielded no reduction. On d 3, CR and PA resulted in 0.9 and 1.2 log10 CFU/g reduction of Salmonella, respectively (P < 0.05). For the lower inoculum study, consistent Salmonella reductions were obtained with CR and PA (1.4-2.1 log10 CFU/g) on d 0 and 7. High reductions of Salmonella in processing water were obtained in all studies. CR effectively controls Salmonella on wings and carcasses and in processing water immediately after application. Follow-up studies on the organoleptic characteristics of PDA-treated chicken carcasses are necessary.

Keywords: Salmonella; carcass; chilling; organic; plant-derived antimicrobial; wing.

MeSH terms

  • Animals
  • Anti-Infective Agents* / pharmacology
  • Chickens / microbiology
  • Colony Count, Microbial / veterinary
  • Eugenol* / pharmacology
  • Food Handling / methods
  • Food Microbiology
  • Salmonella
  • Water / pharmacology

Substances

  • Eugenol
  • carvacrol
  • beta-resorcylic acid
  • Anti-Infective Agents
  • Water