Graphite resistive heated diamond anvil cell for simultaneous high-pressure and high-temperature diffraction experiments

Rev Sci Instrum. 2023 Aug 1;94(8):083903. doi: 10.1063/5.0132981.

Abstract

High-pressure and high-temperature experiments using a resistively heated diamond anvil cell have the advantage of heating samples homogeneously with precise temperature control. Here, we present the design and performance of a graphite resistive heated diamond anvil cell (GRHDAC) setup for powder and single-crystal x-ray diffraction experiments developed at the Extreme Conditions Beamline (P02.2) at PETRA III, Hamburg, Germany. In the GRHDAC, temperatures up to 2000 K can be generated at high pressures by placing it in a water-cooled vacuum chamber. Temperature estimates from thermocouple measurements are within +/-35 K at the sample position up to 800 K and within +90 K between 800 and 1400 K when using a standard seat combination of cBN and WC. Isothermal compression at high temperatures can be achieved by employing a remote membrane control system. The advantage of the GRHDAC is demonstrated through the study of geophysical processes in the Earth's crust and upper mantle region.