Rationale and objectives: Methods are needed to improve the detection of hepatic metastases. Errors occur in both lesion detection (search) and decisions of benign versus malignant (classification). Our purpose was to evaluate a training program to reduce search errors and classification errors in the detection of hepatic metastases in contrast-enhanced abdominal computed tomography (CT).
Materials and methods: After Institutional Review Board approval, we conducted a single-group prospective pretest-posttest study. Pretest and posttest were identical and consisted of interpreting 40 contrast-enhanced abdominal CT exams containing 91 liver metastases under eye tracking. Between pretest and posttest, readers completed search training with eye-tracker feedback and coaching to increase interpretation time, use liver windows, and use coronal reformations. They also completed classification training with part-task practice, rating lesions as benign or malignant. The primary outcome was metastases missed due to search errors (<2 seconds gaze under eye tracker) and classification errors (>2 seconds). Jackknife free-response receiver operator characteristic (JAFROC) analysis was also conducted.
Results: A total of 31 radiologist readers (8 abdominal subspecialists, 8 nonabdominal subspecialists, 15 senior residents/fellows) participated. Search errors were reduced (pretest 11%, posttest 8%, difference 3% [95% confidence interval, 0.3%-5.1%], P = .01), but there was no difference in classification errors (difference 0%, P = .97) or in JAFROC figure of merit (difference -0.01, P = .36). In subgroup analysis, abdominal subspecialists demonstrated no evidence of change.
Conclusion: Targeted training reduced search errors but not classification errors for the detection of hepatic metastases at contrast-enhanced abdominal CT. Improvements were not seen in all subgroups.
Keywords: Classification errors; Eye tracking; Radiologist training; Search errors.
Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.