LHPP-mediated inorganic pyrophosphate hydrolysis-driven lysosomal acidification in astrocytes regulates adult neurogenesis

Cell Rep. 2023 Aug 29;42(8):112975. doi: 10.1016/j.celrep.2023.112975. Epub 2023 Aug 12.

Abstract

In bacteria, archaea, protists, and plants, the hydrolysis of pyrophosphate (PPi) by inorganic pyrophosphatase (PPase) can, under stress conditions, substitute for ATP-driven proton flux to generate a proton gradient and induce luminal acidification. However, this strategy is considered to be lost in eukaryotes. Here, we report that LHPP, a poorly understood PPase that exhibits activity at acidic pH, is primarily expressed in astrocytes and partly localized on lysosomal membranes. Under stress conditions, LHPP is recruited to vacuolar ATPase (V-ATPase) and facilitates V-ATPase-dependent proton transport and lysosomal acidification by hydrolyzing PPi. LHPP knockout (KO) mice have no discernable phenotype but are resilient to chronic-stress-induced depression-like behaviors. Mechanistically, LHPP deficiency prevents lysosome-dependent degradation of C/EBPβ and induces the expression of a group of chemokines that promote adult neurogenesis. Together, these findings suggest that LHPP is likely to be a therapeutic target for stress-related brain disease.

Keywords: CP: Cell biology; CP: Neuroscience.