Composite receptive fields in the mouse auditory cortex

J Physiol. 2023 Sep;601(18):4091-4104. doi: 10.1113/JP285003. Epub 2023 Aug 14.

Abstract

A central question in sensory neuroscience is how neurons represent complex natural stimuli. This process involves multiple steps of feature extraction to obtain a condensed, categorical representation useful for classification and behaviour. It has previously been shown that central auditory neurons in the starling have composite receptive fields composed of multiple features. Whether this property is an idiosyncratic characteristic of songbirds, a group of highly specialized vocal learners or a generic property of sensory processing is unknown. To address this question, we have recorded responses from auditory cortical neurons in mice, and characterized their receptive fields using mouse ultrasonic vocalizations (USVs) as a natural and ethologically relevant stimulus and pitch-shifted starling songs as a natural but ethologically irrelevant control stimulus. We have found that these neurons display composite receptive fields with multiple excitatory and inhibitory subunits. Moreover, this was the case with either the conspecific or the heterospecific vocalizations. We then trained the sparse filtering algorithm on both classes of natural stimuli to obtain statistically optimal features, and compared the natural and artificial features using UMAP, a dimensionality-reduction algorithm previously used to analyse mouse USVs and birdsongs. We have found that the receptive-field features obtained with both types of the natural stimuli clustered together, as did the sparse-filtering features. However, the natural and artificial receptive-field features clustered mostly separately. Based on these results, our general conclusion is that composite receptive fields are not a unique characteristic of specialized vocal learners but are likely a generic property of central auditory systems. KEY POINTS: Auditory cortical neurons in the mouse have composite receptive fields with several excitatory and inhibitory features. Receptive-field features capture temporal and spectral modulations of natural stimuli. Ethological relevance of the stimulus affects the estimation of receptive-field dimensionality.

Keywords: UMAP; auditory cortex; receptive field; sparse filtering; ultrasonic vocalizations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Animals
  • Auditory Cortex* / physiology
  • Auditory Perception / physiology
  • Interneurons
  • Mice
  • Neurons / physiology