Mature oil fields potentially contain multiple fluid migration pathways toward protected groundwater (total dissolved solids, TDS, in nonexempted aquifer <10,000 mg/L) because of their extensive development histories. Time-series data for water use, fluid pressures, oil-well construction, and geochemistry from the South Belridge and Lost Hills mature oil fields in California are used to explore the roles of injection/production of oil-field water and well-integrity issues in fluid migration. Injection/production of oil-field water modified hydraulic gradients in both oil fields, resulting in chemical transport from deeper groundwater and hydrocarbon-reservoir systems to aquifers in the oil fields. Those aquifers are used for water supply outside the oil-field boundaries. Oil wells drilled before 1976 can be fluid migration pathways because a relatively large percentage of them have >10 m of uncemented annulus that straddles oil-well casing damage and/or the base of groundwater with TDS <10,000 mg/L. The risk of groundwater-quality degradation is higher when wells with those risk factors occur in areas with upward hydraulic gradients created by positive net injection, groundwater withdrawals, or combinations of these variables. The complex changes in hydrologic conditions and groundwater chemistry likely would not have been discovered in the absence of years to decades of monitoring data for groundwater elevations and chemistry, and installation of monitoring wells in areas with overlapping risk factors. Important monitoring concepts based on results from this and other studies include monitoring hydrocarbon-reservoir and groundwater systems at multiple spatiotemporal scales and maintaining transparency and accessibility of data and analyses. This analysis focuses on two California oil fields, but the methods used and processes affecting fluid migration could be relevant in other oil fields where substantial injection/production of oil-field water occurs and oil-well integrity is of concern.
Keywords: Fluid migration; Mature oil fields; Monitoring principles; Underground fluid injection; Water budgets; Well damage.
Published by Elsevier B.V.