Background: Inflammatory bowel disease (IBD) is closely related to higher intracellular oxidative stress. Therefore, developing a novel method to scavenge the harmful reactive oxygen species (ROS) and alleviate colon inflammation to treat IBD is a promising strategy.
Methods: CeO2@PDA-PEG (CeO2@PP) were synthesized by modifying ceria (CeO2) nanorods with polydopamine (PDA) and polyethylene glycol (PEG). The ROS scavenging ability of CeO2@PP was detected by using flow cytometry and confocal laser scanning microscope (CLSM). The anti-inflammatory ability of CeO2@PP was determined in vitro by treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The biocompatibility of CeO2@PP was evaluated in vivo and in vitro. Moreover, the therapeutic effects of CeO2@PP in vivo were estimated in a dextran sulfate sodium salt (DSS)-induced colitis mouse model.
Results: Physicochemical property results demonstrated that PDA and PEG modification endowed CeO2 nanorods with excellent dispersibility and colloidal stability. CeO2@PP maintained superior enzyme-like activity, including superoxide dismutase (SOD) and catalase (CAT), indicating antioxidant ability. Moreover, in vitro results showed that CeO2@PP with PDA promotes LPS-induced RAW 264.7 macrophages into M2-type polarization. In addition, in vitro and in vivo results showed that CeO2@PP have great biocompatibility and biosafety. Animal experiments have shown that CeO2@PP have excellent anti-inflammatory effects against DSS-induced colitis and effectively alleviated intestinal mucosal injury.
Conclusion: The nanoplatform CeO2@PP possessed excellent antioxidant and anti-inflammatory properties for scavenging ROS and modulating macrophage polarization, which is beneficial for efficient colitis therapy.
Keywords: PDA; anti-inflammation; antioxidation; ceria; colitis; macrophage polarization; nanozyme.
© 2023 Zhang et al.