Human serum albumin (HSA) as the most abundant plasma protein carries multifunctional properties. A major determinant of the efficacy of albumin relies on its potent binding capacity for toxins and pharmaceutical agents. Albumin binding is impaired in pathological conditions, affecting its function as a molecular scavenger. Limited knowledge is available on the functional properties of albumin in critically ill patients with sepsis or septic shock. A prospective, non-interventional clinical trial assessed blood samples from 26 intensive care patients. Albumin-binding capacity (ABiC) was determined by quantifying the unbound fraction of the fluorescent marker, dansyl sarcosine. Electron paramagnetic resonance fatty acid spin-probe evaluated albumin's binding and detoxification efficiencies. Binding efficiency (BE) reflects the strength and amount of bound fatty acids, and detoxification efficiency (DTE) indicates the molecular flexibility of patient albumin. ABiC, BE, and DTE effectively differentiated control patients from those with sepsis or septic shock (AUROC > 0.8). The diagnostic performance of BE showed similarities to procalcitonin. Albumin functionality correlates with parameters for inflammation, hepatic, or renal insufficiency. Albumin-binding function was significantly reduced in critically ill patients with sepsis or septic shock. These findings may help develop patient-specific algorithms for new diagnostic and therapeutic approaches.
Keywords: albumin; binding capacity; critical care; electron paramagnetic resonance; intensive care medicine; sepsis; septic shock; spin-probe technique.