A modular approach for the synthesis of isolable crystalline Schlenk hydrocarbon diradicals from m-phenylene bridged electron-rich bis-triazaalkenes as synthons is reported. EPR spectroscopy confirms their diradical nature and triplet electronic structure by revealing a half-field signal. A computational analysis confirms the triplet state to be the ground state. As a proof-of-principle for the modular methodology, the 4,6-dimethyl-m-phenylene was further utilized as a coupling unit between two alkene motifs. The steric conjunction of the 4,6-dimethyl groups substantially twists the substituents at the nonbonding electron bearing centers relative to the central coupling m-phenylene motif. As a result, the spin delocalization is decreased and the exchange coupling between the two unpaired spins, hence, significantly reduced. Notably, 108 years after Schlenk's m-phenylene-bis(diphenylmethyl) synthesis as a diradical, for the first time we were able to isolate its derivative with the same spacer, i.e. m-phenylene, between two radical centers in a crystalline form.
Keywords: Alkenes; Conjugation; Radicals; Schlenk Hydrocarbon; Structure Elucidation.
© 2023 Wiley-VCH GmbH.