Toughening colloidal gels using rough building blocks

Nat Commun. 2023 Aug 31;14(1):5309. doi: 10.1038/s41467-023-41098-9.

Abstract

Colloidal gels, commonly used as mesoporous intermediates or functional materials, suffer from brittleness, often showing small yield strains on the order of 1% or less for gelled colloidal suspensions. The short-range adhesive forces in most such gels are central forces-combined with the smooth morphology of particles, the resistance to yielding and shear-induced restructuring is limited. In this study, we propose an innovative approach to improve colloidal gels by introducing surface roughness to the particles to change the yield strain, giving rise to non-central interactions. To elucidate the effects of particle roughness on gel properties, we prepared thermoreversible gels made from rough or smooth silica particles using a reliable click-like-chemistry-based surface grafting technique. Rheological and optical characterization revealed that rough particle gels exhibit enhanced toughness and self-healing properties. These remarkable properties can be utilized in various applications, such as xerogel fabrication and high-fidelity extrusion 3D-printing, as we demonstrate in this study.