Natural language processing deep learning models for the differential between high-grade gliomas and metastasis: what if the key is how we report them?

Eur Radiol. 2024 Mar;34(3):2113-2120. doi: 10.1007/s00330-023-10202-4. Epub 2023 Sep 4.

Abstract

Objectives: The differential between high-grade glioma (HGG) and metastasis remains challenging in common radiological practice. We compare different natural language processing (NLP)-based deep learning models to assist radiologists based on data contained in radiology reports.

Methods: This retrospective study included 185 MRI reports between 2010 and 2022 from two different institutions. A total of 117 reports were used for the training and 21 were reserved for the validation set, while the rest were used as a test set. A comparison of the performance of different deep learning models for HGG and metastasis classification has been carried out. Specifically, Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), a hybrid version of BiLSTM and CNN, and a radiology-specific Bidirectional Encoder Representations from Transformers (RadBERT) model were used.

Results: For the classification of MRI reports, the CNN network provided the best results among all tested, showing a macro-avg precision of 87.32%, a sensitivity of 87.45%, and an F1 score of 87.23%. In addition, our NLP algorithm detected keywords such as tumor, temporal, and lobe to positively classify a radiological report as HGG or metastasis group.

Conclusions: A deep learning model based on CNN enables radiologists to discriminate between HGG and metastasis based on MRI reports with high-precision values. This approach should be considered an additional tool in diagnosing these central nervous system lesions.

Clinical relevance statement: The use of our NLP model enables radiologists to differentiate between patients with high-grade glioma and metastasis based on their MRI reports and can be used as an additional tool to the conventional image-based approach for this challenging task.

Key points: • Differential between high-grade glioma and metastasis is still challenging in common radiological practice. • Natural language processing (NLP)-based deep learning models can assist radiologists based on data contained in radiology reports. • We have developed and tested a natural language processing model for discriminating between high-grade glioma and metastasis based on MRI reports that show high precision for this task.

Keywords: Artificial intelligence; Glioma; Metastasis; Natural language processing.

MeSH terms

  • Deep Learning*
  • Glioma* / diagnostic imaging
  • Humans
  • Natural Language Processing
  • Neural Networks, Computer
  • Retrospective Studies