In this study, the synthesized nanocomposite was evaluated novel graphene oxide/pectin/ferrite (GOPF) adsorbent to the adsorption of Rhodamine B (RhB) and Gemifloxacin (GEM) from wastewater. Theoretical studies were carried out using quantum simulation via the Forcite module in Material Studio 2017. The simulation results demonstrated RhB and GEM adsorption over other dyes and drugs. The synthesized nanocomposite was identified by BET, TGA, FT-IR, FE-SEM, XRD, VSM, and EDS. The nanocomposite's ability to effectively take RhB and GEM from an aqueous solution was checked by performing a series of experiments based on the effect of adsorbent dose, initial condensation, contact time, pH, and temperature. The nanocomposite kinetics follow a PSO. The Freundlich isotherm model was applied for maximum adsorption capacity of GEM (124.37 mg/g) and RhB (86.60 mg/g) on GOPF nanocomposite. According to the antibacterial activity test, the synthesized nanocomposite can kill bacteria 5 mm in diameter. Also, the anti-cancer test of nanocomposite was done with 75% viability in high concentrations of nanocomposite. Thus, GOPF application results are not only suitable for dyes but only satisfying for drugs. PRACTITIONER POINTS: GOPF nanocomposite was fabricated for adsorption dye and drug and characterized. The effect of different process parameters, pH, catalyst dosage, contact time, and temperature effect was surveyed. The MD simulation were investigated to adsorb various dyes and drugs. The equilibrium isotherm and adsorption kinetic follow from Freundlich and pseudo-second-order kinetics; GOPF nanocomposite was used for about six cycles. The antibacterial activity and anticancer test of GOPF nanocomposite were investigated by satisfying results.
Keywords: GOPF; MD simulation; ferrite; graphene oxide; nanocomposite; pectin.
© 2023 Water Environment Federation.