Mycobacterium tuberculosis can manipulate the host immunity through its effectors to ensure intracellular survival and colonization. Rv1043c has been identified as an effector potentially involved in M. tuberculosis pathogenicity. To explore the function of M. tuberculosis Rv1043c during infection, we overexpressed this protein in M. smegmatis, a non-pathogenic surrogate model in tuberculosis research. Here, we reported that Rv1043c enhanced mycobacterial survival and down-regulated the release of pro-inflammatory cytokines in macrophages and mice. In addition, Rv1043c inhibited the activation of MAPK and NF-κB signaling by preventing the phosphorylation of TAK1 indirectly. In conclusion, these data suggest that Rv1043c regulates the immune response and enhances the survival of recombinant M. smegmatis in vitro and in vivo.
Keywords: Inflammatory response; MAPK pathway; NF-κB pathway; Rv1043c; TAK1.
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.