Sensitive and accurate biomarker-driven assay guidance has been widely adopted to identify responsive patients for immune checkpoint blockade (ICB) therapy to impede disease progression and extend survival. However, most current assays are invasive, requiring surgical pathology specimens and only informing monochronic information. Here, we report a multiplexed enhanced fluorescence microarray immunoassay (eFMIA) based on a nanostructured gold nanoisland substrate (AuNIS), which macroscopically amplifies near-infrared fluorescence (NIRF) of a structurally symmetric IRDye78 fluorophore by over two orders of magnitude of 202.6-fold. Aided by non-contact piezo-driven micro-dispensing (PDMD), eFMIA simultaneously and semi-quantitatively detected intracellular and secreted programmed death-ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1) in human nasopharyngeal carcinoma (NPC) cells. The assay performance was superior to fluorescence immunoassays (FIA) and enzyme-linked immunosorbent assays (ELISA), with lower detection limits. Using eFMIA, we found significantly differential levels of soluble PD-L1 (sPD-L1) and sICAM-1 in the sera of 28 cancer patients, with different clinical outcomes following anti-PD-1 ICB therapy. With a well-characterized mechanism, the high-performance plasmonic multiplexed assay with the composite biomarkers may be a valuable tool to assist clinicians with decision-making and patient stratification to afford predictive ICB therapy responses.
Keywords: Cancer immunotherapy; Gold nanostructures; Intercellular adhesion molecule-1 (ICAM-1); Near-infrared fluorescence (NIRF); Programmed death-ligand 1 (PD-L1); Protein microarray.
Copyright © 2023. Published by Elsevier B.V.