This study aimed to conduct a comprehensive analysis of actionable gene rearrangements in tumors with microsatellite instability (MSI). The detection of translocations involved tests for 5'/3'-end expression imbalance, variant-specific PCR and RNA-based next generation sequencing (NGS). Gene fusions were detected in 58/471 (12.3%) colorectal carcinomas (CRCs), 4/69 (5.8%) gastric cancers (GCs) and 3/65 (4.6%) endometrial cancers (ECs) (ALK: 8; RET: 12; NTRK1: 24; NTRK2: 2; NTRK3: 19), while none of these alterations were observed in five cervical carcinomas (CCs), four pancreatic cancers (PanCs), three cholangiocarcinomas (ChCs) and two ovarian cancers (OCs). The highest frequency of gene rearrangements was seen in KRAS/NRAS/BRAF wild-type colorectal carcinomas (53/204 (26%)). Surprisingly, as many as 5/267 (1.9%) KRAS/NRAS/BRAF-mutated CRCs also carried tyrosine kinase fusions. Droplet digital PCR (ddPCR) analysis of the fraction of KRAS/NRAS/BRAF mutated gene copies in kinase-rearranged tumors indicated that there was simultaneous co-occurrence of two activating events in cancer cells, but not genetic mosaicism. CRC patients aged above 50 years had a strikingly higher frequency of translocations as compared to younger subjects (56/365 (15.3%) vs. 2/106 (1.9%), p = 0.002), and this difference was particularly pronounced for tumors with normal KRAS/NRAS/BRAF status (52/150 (34.7%) vs. 1/54 (1.9%), p = 0.001). There were no instances of MSI in 56 non-colorectal tumors carrying ALK, ROS1, RET or NTRK1 rearrangements. An analysis of tyrosine kinase gene translocations is particularly feasible in KRAS/NRAS/BRAF wild-type microsatellite-unstable CRCs, although other categories of tumors with MSI also demonstrate moderate occurrence of these events.
Keywords: ALK; NGS; NTRK1; NTRK2; NTRK3; PCR; RET; colorectal cancer; gene rearrangements; microsatellite instability; unbalanced expression.