Quantification of Thread Engagement in Screw-Plate Interface of Polyaxial Locking System Using X-ray Computed Tomography

Materials (Basel). 2023 Aug 30;16(17):5926. doi: 10.3390/ma16175926.

Abstract

This study demonstrates a new method for quantifying thread engagement in mechanical connections and verifies its applicability using biomedical implants under push-out tests. The focus is on orthopedic plate implants employed for bone fracture fixation, which, by design, allow off-axis screw insertion to accommodate different contact conditions. Thread engagement is crucial in determining connection strength and stability. In medical practice, off-axis screw placement is usually necessary due to bone geometries and implant plate rigidity. To address this, the study proposes a quantification method using non-destructive testing with X-ray micro-computed tomography and automated image processing, although tuning the image processing parameters is vital for accurate and reliable results. This enables detailed 3D models of screw-plate interfaces for precise thread engagement measurement. The results show that thread engagement decreases with both, increased off-axis insertion angles and higher torque during insertion. Correlation analysis reveals a strong relationship (R2 > 0.6) between average thread engagement and push-out strength, underscoring the importance of proper screw placement for stable fixation.

Keywords: X-ray computed tomography; orthopedics; polyaxial locking systems; thread engagement.