Background: Air pollution has been associated with gestational diabetes mellitus (GDM). We aim to investigate susceptible windows of air pollution exposure and factors determining population vulnerability.
Methods: We ascertained GDM status in the prospective Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) pregnancy cohort from Los Angeles, California, USA. We calculated the relative risk of GDM by exposure to ambient particulate matter (PM10; PM2.5), nitrogen dioxide (NO2), and ozone (O3) in each week from 12 weeks before to 24 weeks after conception, adjusting for potential confounders, with distributed lag models to identify susceptible exposure windows. We examined effect modification by prenatal depression, median-split pre-pregnancy BMI (ppBMI) and age.
Findings: Sixty (9.7%) participants were diagnosed with GDM among 617 participants (mean age: 28.2 years, SD: 5.9; 78.6% Hispanic, 11.8% non-Hispanic Black). GDM risk increased with exposure to PM2.5, PM10, and NO2 in a periconceptional window ranging from 5 weeks before to 5 weeks after conception: interquartile-range increases in PM2.5, PM10, and NO2 during this window were associated with increased GDM risk by 5.7% (95% CI: 4.6-6.8), 8.9% (8.1-9.6), and 15.0% (13.9-16.2), respectively. These sensitive windows generally widened, with greater effects, among those with prenatal depression, with age ≥28 years, or with ppBMI ≥27.5 kg/m2, than their counterparts.
Interpretation: Preconception and early-pregnancy are susceptible windows of air pollutants exposure that increased GDM risk. Prenatal depression, higher age, or higher ppBMI may increase one's vulnerability to air pollution-associated GDM risk.
Funding: National Institutes of Health, Environmental Protection Agency.
Keywords: Air pollution; Depression; Gestational diabetes; Pre-conception; Sensitive windows; Susceptibility.
© 2023 The Author(s).