Despite being extensively studied because of the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interactions with mammalian cells are still poorly understood. Furthermore, little is known about this coronavirus cycle within the host cells, particularly the steps that lead to viral egress. This study aimed to shed light on the morphological features of SARS-CoV-2 egress by utilizing transmission and high-resolution scanning electron microscopy, along with serial electron tomography, to describe the route of nascent virions towards the extracellular medium. Electron microscopy revealed that the clusters of viruses in the paracellular space did not seem to result from collective virus release. Instead, virus accumulation was observed on incurved areas of the cell surface, with egress primarily occurring through individual vesicles. Additionally, our findings showed that the emission of long membrane projections, which could facilitate virus surfing in Vero cells infected with SARS-CoV-2, was also observed in non-infected cultures, suggesting that these are constitutive events in this cell lineage.
Keywords: Coronavirus egress; Coronavirus infection; Electron microscopy; SARS-CoV-2; Virus-cell interactions.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.