The locus coeruleus directs sensory-motor reflex amplitude across environmental contexts

Curr Biol. 2023 Nov 6;33(21):4679-4688.e3. doi: 10.1016/j.cub.2023.08.085. Epub 2023 Sep 22.

Abstract

Purposeful movement across unpredictable environments requires quick, accurate, and contextually appropriate motor corrections in response to disruptions in balance and posture.1,2,3 These responses must respect both the current position and limitations of the body, as well as the surrounding environment,4,5,6 and involve a combination of segmental reflexes in the spinal cord, vestibulospinal and reticulospinal pathways in the brainstem, and forebrain structures such as the motor cortex.7,8,9,10 These motor plans can be heavily influenced by the animal's surrounding environment, even when that environment has no mechanical influence on the perturbation itself. This environmental influence has been considered as cortical in nature, priming motor responses to a perturbation.8,11 Similarly, postural responses can be influenced by environments that alter threat levels in humans.12,13,14,15,16,17,18 Such studies are generally in agreement with work done in the mouse showing that optogenetic stimulation of the lateral vestibular nucleus (LVN) only results in motor responses when the animal is on a balance beam at height and not when walking on the stable surface of a treadmill.10 In general, this ability to flexibly modify postural responses across terrains and environmental conditions is a critically important component of the balance system.19,20 Here we show that LVN-generated motor corrections can be altered by manipulating the surrounding environment. Furthermore, environmental influence on corrections requires noradrenergic signaling from the locus coeruleus, suggesting a potential link between forebrain structures that convey sensory information about the environment and brainstem circuits that generate motor corrections.

Keywords: EMG; balance; lateral vestibular nucleus; locus coeruleus; motor control; muscle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Locus Coeruleus* / physiology
  • Mice
  • Norepinephrine
  • Reflex* / physiology
  • Spinal Cord / physiology

Substances

  • Norepinephrine