Direct observation of the collective modes of the charge density wave in the kagome metal CsV3Sb5

Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2308588120. doi: 10.1073/pnas.2308588120. Epub 2023 Sep 25.

Abstract

A recently discovered group of kagome metals AV[Formula: see text]Sb[Formula: see text] (A = K, Rb, Cs) exhibit a variety of intertwined unconventional electronic phases, which emerge from a puzzling charge density wave phase. Understanding of this charge-ordered parent phase is crucial for deciphering the entire phase diagram. However, the mechanism of the charge density wave is still controversial, and its primary source of fluctuations-the collective modes-has not been experimentally observed. Here, we use ultrashort laser pulses to melt the charge order in CsV[Formula: see text]Sb[Formula: see text] and record the resulting dynamics using femtosecond angle-resolved photoemission. We resolve the melting time of the charge order and directly observe its amplitude mode, imposing a fundamental limit for the fastest possible lattice rearrangement time. These observations together with ab initio calculations provide clear evidence for a structural rather than electronic mechanism of the charge density wave. Our findings pave the way for a better understanding of the unconventional phases hosted on the kagome lattice.

Keywords: ARPES; charge density wave; collective modes; kagome; ultrafast.