Effect of Different Timing of Local Brain Radiotherapy on Survival of EGFR-Mutated NSCLC Patients with Limited Brain Metastases

Brain Sci. 2023 Sep 3;13(9):1280. doi: 10.3390/brainsci13091280.

Abstract

(1) Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been the first line therapy for EGFR-mutant lung adenocarcinoma (LAC) patients with brain metastases (BMs). However, the role and the optimal time of brain radiotherapy remains controversial. We aimed to investigate the role of upfront brain stereotactic radiotherapy (SRS) and the impact of deferral radiotherapy on patients' clinical outcomes. (2) Methods: We retrospectively studied 53 EGFR-mutant LAC patients with limited synchronous BMs between 2014 and 2020 at our institute. The limited BMs was defined with one to four BM lesions, with a maximal size of ≤4 cm. Patients were categorized into two groups: upfront brain SRS (upfront RT) and upfront TKIs. The intracranial progression-free survival (iPFS), progression-free survival (PFS), and overall survival (OS) between groups were analyzed. (3) Results: The median iPFS (21.0 vs. 12.0 months, p = 0.002) and PFS (20.0 vs. 11.0 months, p = 0.004) of the upfront RT group was longer than that of the upfront TKI group. There were no significant differences in median OS (30.0 vs. 26.0 months, p = 0.552) between the two groups. The upfront RT group is less likely to suffer from intracranial progression of the original sites than that of upfront TKIs during the disease course (36.1% vs. 0.0%, p = 0.025). Multivariate analysis showed that the Karnofsky Performance Scale and the presence of synchronous meningeal metastases were associated with overall survival. (4) Conclusions: Compared with upfront TKI, the combination of upfront SRS with TKIs can improve the iPFS and PFS in EGFR-mutant LAC with synchronous BMs. The addition of upfront brain SRS was useful for the original intracranial metastatic lesions.

Keywords: EGFR-TKIs; brain metastases; brain radiotherapy; lung adenocarcinoma.