Gender-Specific Interactions in a Visual Object Recognition Task in Persons with Opioid Use Disorder

Biomedicines. 2023 Sep 5;11(9):2460. doi: 10.3390/biomedicines11092460.

Abstract

Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide over the past two decades, with death rates for men reported at twice the rate for women. Using a controlled, cross-sectional, age-matched (18-56 y) design to better understand the cognitive neuroscience of OUD, we evaluated the electroencephalographic (EEG) responses of male and female participants with OUD vs. age- and gender-matched non-OUD controls during a simple visual object recognition Go/No-Go task. Overall, women had significantly slower reaction times (RTs) than men. In addition, EEG N200 and P300 event-related potential (ERP) amplitudes for non-OUD controls were significantly larger for men, while their latencies were significantly shorter than for women. However, while N200 and P300 amplitudes were not significantly affected by OUD for either men or women in this task, latencies were also affected differentially in men vs. women with OUD. Accordingly, for both N200 and P300, male OUD participants exhibited longer latencies while female OUD participants exhibited shorter ones than in non-OUD controls. Additionally, robust oscillations were found in all participants during a feedback message associated with performance in the task. Although alpha and beta power during the feedback message were significantly greater for men than women overall, both alpha and beta oscillations exhibited significantly lower power in all participants with OUD. Taken together, these findings suggest important gender by OUD differences in cognitive processing and reflection of performance in this simple visual task.

Keywords: alpha and beta brain oscillations; electroencephalogram (EEG); event-related potentials (ERP); gender-specific differences; opioid use disorder (OUD); substance use disorder (SUD); visual attention; visual cognitive processing; visual evoked potential (VEP).