Tick and tick-borne disease control have been a serious research focus for many decades. In a global climate of increasing acaricide resistance, host immunity against tick infestation has become a much-needed complementary strategy to common chemical control. From the earliest acquired resistance studies in small animal models to proof of concept in large production animals, it was the isolation, characterization, and final recombinant protein production of the midgut antigen Bm86 from the Australian cattle tick strain of Rhipicephalus (Boophilus) microplus (later reinstated as R. (B.) australis) that established tick subunit vaccines as a viable alternative in tick and tick-borne disease control. In the past 37 years, this antigen has spawned numerous tick subunit vaccines (either Bm86-based or novel), and though we are still describing its molecular structure and function, this antigen remains the gold standard for all tick vaccines. In this paper, advances in tick vaccine development over the past three decades are discussed alongside the development of biotechnology, where existing gaps and future directives in the field are highlighted.
Keywords: Bm86; antigen; tick; vaccine; vaccine development.