Perovskite solar cells have achieved rapid progress in the new-generation photovoltaic field, but the commercialization lags behind owing to the device stability issue under operational conditions. Ultimately, the instability issue is attributed to the soft lattice of ionic perovskite crystal. In brief, metal halide perovskite materials are susceptible to structural instability processes, including phase segregation, component loss, lattice distortion, and fatigue failure under harsh external stimuli such as high humidity, strong irradiation, wide thermal cycles, and large stress. Developing self-healing perovskites to further improve the unsatisfactory operational stability of their photoelectric devices under harsh stimuli has become a cutting-edge hotspot in this field. This self-healing behavior needs to be studied more comprehensively. Therefore, the self-healing behavior of the metal halide perovskites and photovoltaics is classified and summarized in this review. By discussing recent advances, underlying mechanisms, strategies, and existing challenges, this review provides perspectives on self-healing of perovskite solar cells in the future.
Keywords: ion migration; metal halide perovskite; self-healing; solar cells; stability.
© 2023 Wiley-VCH GmbH.