Targeting redox imbalance in neurodegeneration: characterizing the role of GLP-1 receptor agonists

Theranostics. 2023 Sep 4;13(14):4872-4884. doi: 10.7150/thno.86831. eCollection 2023.

Abstract

Reactive oxygen species (ROS) have emerged as essential signaling molecules regulating cell survival, death, inflammation, differentiation, growth, and immune response. Environmental factors, genetic factors, or many pathological condition such as diabetes increase the level of ROS generation by elevating the production of advanced glycation end products, reducing free radical scavengers, increasing mitochondrial oxidative stress, and by interfering with DAG-PKC-NADPH oxidase and xanthine oxidase pathways. Oxidative stress, and therefore the accumulation of intracellular ROS, determines the deregulation of several proteins and caspases, damages DNA and RNA, and interferes with normal neuronal function. Furthermore, ROS play an essential role in the polymerization, phosphorylation, and aggregation of tau and amyloid-beta, key mediators of cognitive function decline. At the neuronal level, ROS interfere with the DNA methylation pattern and various apoptotic factors related to cell death, promoting neurodegeneration. Only few drugs are able to quench ROS production in neurons. The cross-linking pathways between diabetes and dementia suggest that antidiabetic medications can potentially treat dementia. Among antidiabetic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been found to reduce ROS generation and ameliorate mitochondrial function, protein aggregation, neuroinflammation, synaptic plasticity, learning, and memory. The incretin hormone glucagon-like peptide-1 (GLP-1) is produced by the enteroendocrine L cells in the distal intestine after food ingestion. Upon interacting with its receptor (GLP-1R), it regulates blood glucose levels by inducing insulin secretion, inhibiting glucagon production, and slowing gastric emptying. No study has evidenced a specific GLP-1RA pathway that quenches ROS production. Here we summarize the effects of GLP-1RAs against ROS overproduction and discuss the putative efficacy of Exendin-4, Lixisenatide, and Liraglutide in treating dementia by decreasing ROS.

Keywords: Dementia; Diabetes; GLP-1RAs; Oxidative stress; ROS.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid beta-Peptides / metabolism
  • Dementia* / drug therapy
  • Diabetes Mellitus* / drug therapy
  • Diabetes Mellitus, Type 2* / metabolism
  • Glucagon-Like Peptide 1 / metabolism
  • Glucagon-Like Peptide-1 Receptor Agonists
  • Humans
  • Hypoglycemic Agents / chemistry
  • Oxidation-Reduction
  • Reactive Oxygen Species / metabolism
  • Transcription Factors / metabolism

Substances

  • Amyloid beta-Peptides
  • Glucagon-Like Peptide 1
  • Hypoglycemic Agents
  • Reactive Oxygen Species
  • Transcription Factors
  • Glucagon-Like Peptide-1 Receptor Agonists