Detailing the physical basis of neural circuits with large-volume serial electron microscopy (EM), 'connectomics', has emerged as an invaluable tool in the neuroscience armamentarium. However, imaging synaptic resolution connectomes is currently limited to either transmission electron microscopy (TEM) or scanning electron microscopy (SEM). Here, we describe a third way, using photoemission electron microscopy (PEEM) which illuminates ultra-thin brain slices collected on solid substrates with UV light and images the photoelectron emission pattern with a wide-field electron microscope. PEEM works with existing sample preparations for EM and routinely provides sufficient resolution and contrast to reveal myelinated axons, somata, dendrites, and sub-cellular organelles. Under optimized conditions, PEEM provides synaptic resolution; and simulation and experiments show that PEEM can be transformatively fast, at Gigahertz pixel rates. We conclude that PEEM imaging leverages attractive aspects of SEM and TEM, namely reliable sample collection on robust substrates combined with fast wide-field imaging, and could enable faster data acquisition for next-generation circuit mapping.