Heavy metals (HMs) at a concentration above the threshold level act as environmental pollutants and very often threaten the agricultural productivity globally. Finding affordable and environmentally sustainable deliverables to address this issue is therefore a top focus. Phytohormones alleviate the HMs-induced toxicity and positively influence the plant growth. Considering the importance of phytohormones, the present study aimed to assess the effect of 24-epibrassinolide (24-EBL; 10 µM) as seed soaking treatment on growth performance of Zea mays (L.) contaminated separately with increasing concentrations (50-400 mg.kg-1) of lead (Pb) and cadmium (Cd). With increasing metal concentrations, growth and plant biometric criteria were reduced. For instance, Cd at 400 mg.kg-1 soil reduced the germination efficiency (56%), root (77%) and shoot (69%) dry weight, total chlorophyll (64%), and carotenoid content (45%). Contrarily, both HMs caused increase in stress biomarkers and antioxidant enzymes in seedling. However, exogenous administration of 24-EBL significantly enhanced the growth attributes, photosynthetic pigments, proline, MDA, and antioxidant enzyme activity while reducing the harmful effects of HMs stress on Z. mays. For instance, 24-EBL (10 µM) improved the germination percentage, root biomass, chl a, chl b, total chlorophyll, and carotenoid content by 16, 21, 17, 34, 18, and 15%, respectively, in 50 mg.Pb.kg-1 soil-treated Z. mays plants. Furthermore, the amounts of proline, MDA, and antioxidant enzymes in foliage of Z. mays were interestingly and dramatically lowered by 24-EBL application. Uptake of metals in plant organs was significantly reduced when 24-EBL was applied to Pb- and Cd-treated Z. mays. The recent findings help us better understand how 24-EBL regulates growth and development of Z. mays as well as how it boosts HMs' resilience, which could increase the possibility of employing 24-EBL to increase Z. mays productivity. Thus, the present findings confirmed the potentiality of pre-soaking the seed in 24-EBL solution that neutralizes the toxic effects of heavy metals in Z. mays plants. Therefore, it is suggested that applying phytohormones including 24-EBL in removal of heavy metal stress in plants is the best possible solution in sustainable agriculture.
Keywords: Zea mays (L.); 24-Epibrassinolide (EBL); Antioxidant enzyme; Cd and Pb toxicity; Growth and physiology; Phytohormones.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.