Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia

Front Immunol. 2023 Sep 19:14:1270843. doi: 10.3389/fimmu.2023.1270843. eCollection 2023.

Abstract

Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.

Keywords: AML; CRISPR; allogeneic CAR-T; transcriptomics (RNA sequencing); transposon.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Animals
  • Disease Models, Animal
  • Hematopoietic Stem Cell Transplantation*
  • Humans
  • Immunotherapy, Adoptive / methods
  • Leukemia, Myeloid, Acute* / genetics
  • Leukemia, Myeloid, Acute* / metabolism
  • Leukemia, Myeloid, Acute* / therapy
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Antigen, T-Cell / metabolism
  • T-Lymphocytes / metabolism

Substances

  • Receptors, Antigen, T-Cell

Grants and funding

The authors declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Instituto de Salud Carlos III co-financed by European Regional Development Fund-FEDER “A way to make Europe” (PI19/00922 and PI20/01308), Red de Terapias Avanzadas TERAV (RD21/0017/0009), Centro de Investigación Biomédica en Red de Cáncer CIBERONC (CB16/12/00489), Ministerio de Ciencia e Innovación co-financed by European Regional Development Fund-FEDER “A way to make Europe” (RTI2018-101708-A-I00), European Commission (H2020-JTI- IMI2-2019-18: Contract 945393, T2EVOLVE; SC1-PM-08-2017: Contract 754658, CARAMBA; and H2020-MSCA-IF-2019: Grant Agreement 898356), Cancer Research UK (C355/A26819) and FC AECC and AIRC under the Accelerator Award Program, Gobierno de Navarra (AGATA: 0011-1411-2020-000011 and 0011-1411-2020-000010; DESCARTHeS: 0011-1411-2019-000079 and 0011-1411-2019-000072; alloCART-LMA: PC011-012), and Paula and Rodger Riney Foundation. PR-M was supported by FPU grant (FPU19/06160) from Ministerio de Universidades.