TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis

Plant Sci. 2023 Dec:337:111881. doi: 10.1016/j.plantsci.2023.111881. Epub 2023 Oct 6.

Abstract

Glutathione peroxidases (GPXs) are known to play an essential role in guarding cells against oxidative stress by catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. The current study aims functional characterization of the TaGPX1-D gene of bread wheat (Triticum aestivum) for salinity and osmotic stress tolerance. To achieve this, we initially performed the spot assays of TaGPX1-D expressing yeast cells. The growth of recombinant TaGPX1-D expressing yeast cells was notably higher than the control cells under stress conditions. Later, we generated transgenic Arabidopsis plants expressing the TaGPX1-D gene and investigated their tolerance to various stress conditions. The transgenic plants exhibited improved tolerance to both salinity and osmotic stresses compared to the wild-type plants. The higher germination rates, increased antioxidant enzymes activities, improved chlorophyll, carotenoid, proline and relative water contents, and reduced hydrogen peroxide and MDA levels in the transgenic lines supported the stress tolerance mechanism. Overall, this study demonstrated the role of TaGPX1-D in abiotic stress tolerance, and it can be used for improving the tolerance of crops to environmental stressors, such as salinity and osmotic stress in future research.

Keywords: Antioxidant; Bread wheat; Glutathione peroxidase; Osmotic; Salinity; Transgenic.

MeSH terms

  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Arabidopsis* / physiology
  • Gene Expression Regulation, Plant
  • Glutathione Peroxidase / genetics
  • Glutathione Peroxidase / metabolism
  • Hydrogen Peroxide / metabolism
  • Osmotic Pressure*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plants, Genetically Modified* / genetics
  • Salinity*
  • Salt Tolerance / genetics
  • Stress, Physiological / genetics
  • Triticum* / genetics
  • Triticum* / metabolism
  • Triticum* / physiology

Substances

  • Plant Proteins
  • Glutathione Peroxidase
  • Hydrogen Peroxide