Revisiting the Role of Esophageal Mucosal Dilated Intercellular Spaces in the Diagnosis and Pathophysiology of Heartburn

J Neurogastroenterol Motil. 2023 Oct 30;29(4):436-445. doi: 10.5056/jnm22142.

Abstract

Background/aims: Dilated intercellular spaces (DISs) facilitate the diffusion of noxious agents into the deep layers of the esophageal epithelium. The role of DIS in heartburn pathogenesis is still controversial. Therefore, we aim to reinvestigate DIS in an extensively evaluated group of patients and healthy controls (HCs).

Methods: We classified 149 subjects into the following groups: 15 HC, 58 mild erosive reflux disease (ERD), 17 severe ERD, 25 nonerosive reflux disease (NERD), 15 reflux hypersensitivity (RH), and 19 functional heartburn (FH). A total of 100 length measurements were performed for each patient's biopsy.

Results: The overall intercellular spaces (ISs) value of gastroesophageal reflux disease (GERD) patients was higher than that of HC (P = 0.020). In phenotypes, mild ERD (vs HC [P = 0.036], NERD [P = 0.004], RH [P = 0.014]) and severe ERD (vs HC [P = 0.002], NERD [P < 0.001], RH [P = 0.001], FH [P = 0.004]) showed significantly higher IS. There was no significant difference between the HC, NERD, RH, and FH groups. The 1.12 μm DIS cutoff value had 63.5% sensitivity and 66.7% specificity in the diagnosis of GERD. There was a weak correlation (r = 0.302) between the IS value and acid exposure time, and a weak correlation (r = -0.359) between the IS value and baseline impedance. A strong correlation was shown between acid exposure time and baseline impedance (r = -0.783).

Conclusions: Since the IS length measurement had better discrimination power only in erosive groups, it is not feasible to use in daily routine to discriminate other nonerosive phenotypes and FH. The role of DIS in heartburn in nonerosive patients should be reconsidered.

Keywords: Electric impedance; Endoscopy, gastrointestinal; Extracellular space; Gastroesophageal reflux; Heartburn.

Grants and funding

Financial support: This study was supported by TUBITAK (Project ID 118S260) and Ege University Scientific Research Project Coordination Unit (Project ID: TGA-2021-22732).