Preclinical study of pachyman inducing ferroptosis against ovarian cancer: Biological targets and underlying mechanisms

Food Sci Nutr. 2023 Jun 29;11(10):5999-6009. doi: 10.1002/fsn3.3534. eCollection 2023 Oct.

Abstract

Ferroptosis has gained extreme purpose in targeting cancer treatment. Poria cocos Wolf, a traditional Chinese herb, has potential anticancer properties, but the action and mechanism against ovarian cancer remain undetailed. Pachyman (Poria cocos polysaccharides) refers to the pharmacologically bioactive ingredients rich in Poria cocos. This study aimed to identify the potent actions and the network mechanisms of pachyman against ovarian cancer through preclinical analysis. Online-accessible database or platform was employed to predict candidate genes and core targets associated with ferroptosis in pachyman against ovarian cancer. Enrichment analyses were used to characterize the functional action and signaling mechanism in pachyman to treat ovarian cancer. Molecular docking imitation was conducted for verification of core target proteins. Network analysis uncovered that there were 30 mutual and 13 core genes targeting ferroptosis in pachyman and/against ovarian cancer, and additional enrichment analysis characterized that these core genes may act synergistically through multiple biological processes and molecular pathways associated with ferroptosis, including anti-inflammatory action, immunoregulation, and microenvironment modulation. The strongest affinities in core target proteins between pachyman and sarcoma (SRC), signal transducer, and activator of transcription 3 (STAT3) were further validated using molecular docking method. In conclusion, pachyman may induce antiovarian cancer potentials via regulating ferroptosis-associated biological functions and pharmacological mechanisms based on current bioinformatics findings. We reason that pachyman, the beneficial nutraceuticals, may be used clinically for future application in ovarian cancer treatment.

Keywords: Pachyman; bioinformatics findings; ferroptosis; malignant features; ovarian cancer.