The vasopressin type 2 receptor (V2R) is an essential G protein-coupled receptor (GPCR) in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of β-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the β-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/β-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data imply that β-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of β-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both β-arrestin-dependent and -independent manners.
Keywords: G proteins; arrestin; cell biology; endosomal signaling; human; megaplex; vasopressin type 2 receptor.
© 2023, Daly et al.