Episodic memory requires the hippocampus and prefrontal cortex to guide decisions by representing events in spatial, temporal, and personal contexts. Both brain regions have been described by cognitive theories that represent events in context as locations in maps or memory spaces. We query whether ensemble spiking in these regions described spatial structures as rats performed memory tasks. From each ensemble, we construct a state-space with each point defined by the coordinated spiking of single and pairs of units in 125-ms bins and investigate how state-space locations discriminate task features. Trajectories through state-spaces correspond with behavioral episodes framed by spatial, temporal, and internal contexts. Both hippocampal and prefrontal ensembles distinguish maze locations, task intervals, and goals by distances between state-space locations, consistent with cognitive mapping and relational memory space theories of episodic memory. Prefrontal modulation of hippocampal activity may guide choices by directing memory representations toward appropriate state-space goal locations.
Keywords: CP: Neuroscience; cognitive maps; decision making; episodic memory; frontotemporal interactions; hippocampus; learning; neuronal representations; prefrontal cortex; relational memory space.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.