Inflammatory bowel disease (IBD) is a worldwide public health issue with an increasing number of patients annually. However, there is no curative drug for IBD, and the present medication for IBD generally focuses on suppressing hyperactive immune responses, which can only delay disease progression but inevitably induce off-target side effects, including infections and cancers. Herein, late-model orally administered nanotherapeutic micelles (HADLA) were developed based on a conjugate of hyaluronic acid (HA) and dehydrolithocholic acid (DLA), which was simple to achieve and obtained satisfactory therapeutic efficacy in a murine colitis model with a full safety profile. HADLA is capable of targeting inflammatory colon tissues, restoring intestinal barrier function and reducing intestinal epithelial cell death. Moreover, it modulates the adaptive immune system by inhibiting the activation of pathogenic T helper 17 (Th17) cells, and it exhibits more remarkable effects in preventing colitis than DLA alone. Finally, HADLA exhibits a remarkable ability to modulate dysregulated gut microbiomes by increasing beneficial probiotics and decreasing pathogenic bacteria, such as Turicibacter. Compared with the current systemic or subcutaneous administration of biologics, this study opens new avenues in the oral delivery of immune-modulating nanomedicine and introduces DLA as a new medication for IBD treatment.
Keywords: 3-oxocholan-24-oic acid; Hyaluronic acid; Inflammatory bowel diseases; Micelle; Oral administration.
Copyright © 2023 Elsevier B.V. All rights reserved.