Purpose: Immune checkpoint inhibitors (ICI) have become the standard of care for patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) colorectal cancer. However, biomarkers of response to ICI are still lacking.
Experimental design: Forty-two patients with dMMR colorectal cancer treated with neoadjuvant PD-1 blockade were prospectively enrolled. To identify biomarkers of pathologic complete response (pCR) to neoadjuvant therapy, we analyzed genomic and transcriptomic profiles based on next-generation sequencing, and immune cell density based on multiplex immunofluorescence (mIF) staining. An integrated analysis of single-cell RNA sequencing from our previous study and GSE178341, as well as mIF was performed to further explore the significance of the tumor microenvironment (TME) on pCR response.
Results: The tumor mutation burden of both tumor tissue and plasma blood samples was comparable between the pCR and non-pCR groups, while HLA-DQA1 and HLA-DQB1 were significantly overexpressed in the pCR group. Gene signature enrichment analysis showed that pathways including T-cell receptor pathway, antigen presentation pathway were significantly enriched in the pCR group. In addition, higher pre-existing CD8+ T-cell density was associated with pCR response (767.47 per.mm2 vs. 326.64 per.mm2, P = 0.013 Wilcoxon test). Further integrated analysis showed that CD8+ T cells with low PD-1 expression (PD-1lo CD8+ T cells) expressing high levels of TRGC2, CD160, and KLRB1 and low levels of proliferated and exhausted genes were significantly associated with pCR response.
Conclusions: Immune-associated transcriptomic features, particularly CD8+ T cells were associated with pCR response to ICI in dMMR colorectal cancer. Heterogeneity of TME within dMMR colorectal cancer may help to discriminate patients with complete response to neoadjuvant ICI.
©2023 American Association for Cancer Research.