AgRP neurons encode circadian feeding time

Nat Neurosci. 2024 Jan;27(1):102-115. doi: 10.1038/s41593-023-01482-6. Epub 2023 Nov 13.

Abstract

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.

MeSH terms

  • Agouti-Related Protein
  • Animals
  • Feeding Behavior / physiology
  • Mice
  • Neurons* / physiology
  • Suprachiasmatic Nucleus*

Substances

  • Agouti-Related Protein
  • Agrp protein, mouse