LOXL2 inhibition ameliorates pulmonary artery remodeling in pulmonary hypertension

bioRxiv [Preprint]. 2023 Oct 28:2023.10.24.563874. doi: 10.1101/2023.10.24.563874.

Abstract

Background: Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance has emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen crosslinking enzyme lysyl oxidase like 2 (LOXL2) in this study.

Methods and results: Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe PH. Similarly, LOXL2 protein and mRNA levels were increased in pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in-vivo with PAT-1251. Importantly PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival.

Conclusion: Hypoxia induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH, as well as pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 is a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH.

New & noteworthy: Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function and improves PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.

Publication types

  • Preprint