Bacteria embellish their cell envelopes with a variety of specialized polysaccharides. Biosynthesis pathways for these glycans are complex, and final products vary greatly in their chemical structures, physical properties and biological activities. This tremendous diversity comes from the ability to arrange complex pools of monosaccharide building blocks into polymers with many possible linkage configurations. Due to the complex chemistry of bacterial glycans, very few biosynthetic pathways have been defined in detail. To better understand the breadth of polysaccharide production in nature we isolated a bacterium from Lake Michigan called Sphingomonas sp. LM7 that is proficient in exopolysaccharide (EPS) production. We identified genes that contribute to EPS biosynthesis in LM7 by screening a transposon mutant library for colonies displaying altered colony morphology. A gene cluster was identified that appears to encode a complete wzy/wzx-dependent polysaccharide assembly pathway. Deleting individual genes in this cluster caused a non-mucoid phenotype and a corresponding loss of EPS secretion, confirming that LM7 assembles a novel wzy/wzx-dependent polysaccharide. We extracted EPS from LM7 cultures and showed that it contains a linear chain of 3- and 4- linked glucose, galactose, and glucuronic acid residues. Finally, we found that the EPS pathway we identified diverges from those of adhesive polysaccharides such as the holdfast that are conserved in higher Alphaproteobacteria. Our approach of characterizing complete biosynthetic pathways holds promise for engineering of polysaccharides with valuable properties.
Keywords: Sphingomonas; biopolymer; polysaccharide; wzy.