COVID-19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID-19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID-19 patients. A total of 146 patients with severe or critical COVID-19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID-19 patients' plasma EVs was conducted. Elastic net logistic regression with cross-validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA-DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N-cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N-terminal pro-brain natriuretic peptide (NT-proBNP), age, procalcitonin, Charlson Comorbidity Index and pro-adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.
Keywords: COVID-19; SARS-CoV2; apoptotic bodies; biomarker; exosomes; extracellular vesicles; flow cytometry; machine learning; microvesicles; outcomes.
© 2023 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.