The introduction of a superlattice structure into layered oxide cathode materials is a novel strategy to improve the structural stability of sodium-ion batteries (SIBs). However, the superlattice structure gradually disappears during cycling, which shortens the long life of SIBs. Here, the highly electronegative Zn is introduced into a P2-type layered oxide to regulate the superlattice structure. The obtained P2-Na0.80Li0.13Ni0.20Zn0.03Mn0.64O2 exhibits excellent cycling performance (the capacity retention is 96.7% after 100 cycles at 0.5C) and rate capability (95.8 mAh g-1 at 5C). Zn effectively inhibits the Li migration and the Mn dissolution, which ensures the integrity of the Li/Mn superlattice structure during long cycling, thus achieving an ultralong cycling life of SIBs. The introduction of Zn dramatically increases the length of the c-axis, leading to a faster de-embedding rate of Na+ and a better diffusion kinetics. Meanwhile, the larger pristine volume can withstand more stress/strain due to the sharp increase in the level of O-O repulsion during the desodiation process. In addition, Raman test results show that Zn can inhibit the Na+/vacancy ordering transition and improve the structural stability. This study confirms the feasibility of a Zn-regulated superlattice structure. It provides inspiration for the construction of stable layered oxide cathode materials for SIBs.
Keywords: Zn regulation; layered oxides; sodium-ion batteries; structural stability; superlattice.