Transcutaneous spinal stimulation (TSS) is emerging as a valuable tool for electrophysiological and clinical assessment. This study had the objective of examining the recruitment patterns of upper limb (UL) motor pools through the delivery of TSS above and below a spinal lesion. It also aimed to explore the connection between the recruitment pattern of UL motor pools and the neurological and functional status following spinal cord injury (SCI). In eight participants with tetraplegia due to cervical SCI, TSS was delivered to the cervical spinal cord between the spinous processes of C3-C4 and C7-T1 vertebrae, and spinally evoked motor potentials in UL muscles were characterized. We found that responses observed in UL muscles innervated by motor pools below the level of injury demonstrated relatively reduced sensitivity to TSS compared to those above the lesion, were asymmetrical in the majority of muscles, and were dependent on the level, extent, and side of SCI. Overall, our findings indicate that electrophysiological data acquired through TSS can offer insights into the extent of UL functional asymmetry, disruptions in neural pathways, and changes in motor control following SCI. This study suggests that such electrophysiological data can supplement clinical and functional assessment and provide further insight regarding residual motor function in individuals with SCI.
Keywords: Clinical and functional assessment; Electrophysiology; Motor function; Spinal cord injury; Spinal cord stimulation.