Background: Despite extensive work to identify diagnostic plasma markers for Parkinson's disease (PD), there are still no accepted and validated surrogate biomarkers. Mitophagy-associated proteins (MAPs), including PTEN-induced putative kinase 1 (PINK1), Parkin, phosphoglycerate mutase 5 (PGAM5), BCL2 interacting protein 3 (BNIP3), and phosphorylated-TBK1 (p-TBK1), are, to our best knowledge, not well studied as a panel of biomarkers of neurodegeneration in PD.
Methods: The study population comprised 116 age-matched controls (HC), 179 PD patients, alongside and 90 PD syndromes (PDs) divided between two cohorts: (i) the modeling cohort (cohort 1), including 150 PD, 97 HC, and 80 PDs; and (ii) the validated cohort (cohort 2), including 29 PD, 19 HC, and 10 PDs.
Results: MAPs are elevated in the plasma of PD patients. PINK1, Parkin, and PGAM5 displayed the top three measurable increase trends in amplitude compared to BNIP3 and p-TBK1. Moreover, the area under the curve (AUC) values of PINK1, PGAM5, and Parkin were ranked the top three MAP candidates in diagnosis accuracy for PD from HC, but the MAPs make it hard to differentiate PD from PDs. In addition, there are higher plasma PINK1-Parkin levels and prominent diagnostic accuracy in A-synuclein (+) subjects than in A-synuclein (-) subjects.
Conclusions: These results uncover that plasma MAPs (PINK1, Parkin, and PGAM5) may be potentially useful diagnostic biomarkers for PD diagnosis. Studies on larger cohorts would be required to test whether elevated plasma MAP levels are related to PD risk or prognosis.
Keywords: MAPs; Parkinson's disease; biomarkers; diagnosis; mitophagy‐associated proteins.
© 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.