Investigating Substituent Interactions with Cationic Catalysts

J Org Chem. 2023 Dec 15;88(24):16898-16905. doi: 10.1021/acs.joc.3c01721. Epub 2023 Nov 22.

Abstract

Rates of isothiourea catalyzed silylation and acylation reactions were measured for substrates with various electronic substituents at the aryl group. Through these measurements, the intermolecular interactions between cationic catalyst intermediates and different aryl groups were explored. These studies were performed to understand how changes in the catalyst structure affected electrostatic intermolecular interactions. Three different catalysts (N-methylimidazole and two isothioureas) were employed that varied in their ability to delocalize their cationic nature. The results show that more delocalization on the catalyst reduces the sensitivity to the electronics on the aryl group. Surprisingly, the isothiourea with a fused benzene ring provided additional points of interaction with groups that contained lone-pairs, significantly affecting the overall rate. This work helps explore the interactions that dominate in these types of catalytic systems, to aid in future organocatalysis development. Density functional theory (DFT) studies further confirmed isothiourea/aryl ring interaction with the alcohol substrate in the acylation process, which confirmed these hypotheses. Electron rich or lone-pair bearing functional groups stabilize the cationic catalyst core, thereby stabilizing the transition states and accelerating the reaction. It was also discovered that in one case, the formation of a stable substrate dimer was responsible for its lower reactivity.