Dishevelled Has Anti-Viral Activity in Rift Valley Fever Virus Infected Aedes aegypti

Viruses. 2023 Oct 24;15(11):2140. doi: 10.3390/v15112140.

Abstract

Mosquitoes in the genera Aedes and Culex are vectors of Rift Valley fever virus (RVFV), which emerges in periodic epidemics in Africa and Saudi Arabia. Factors that influence the transmission dynamics of RVFV are not well characterized. To address this, we interrogated mosquito host-signaling responses through analysis of differentially expressed genes (DEGs) in two mosquito species with marked differences in RVFV vector competence: Aedes aegypti (Aae, low competence) and Culex tarsalis (Cxt, high competence). Mosquito-host transcripts related to three different signaling pathways were investigated. Selected genes from the Wingless (Wg, WNT-beta-catenin) pathway, which is a conserved regulator of cell proliferation and differentiation, were assessed. One of these, dishevelled (DSH), differentially regulates progression/inhibition of the WNT and JNK (c-Jun N-terminal Kinase) pathways. A negative regulator of the JNK-signaling pathway, puckered, was also assessed. Lastly, Janus kinase/signal transducers and activators of transcription (JAK-STAT) are important for innate immunity; in this context, we tested domeless levels. Here, individual Aae and Cxt were exposed to RVFV MP-12 via oral bloodmeals and held for 14 days. Robust decreases in DEGs in both Aae and Cxt were observed. In particular, Aae DSH expression, but not Cxt DSH, was correlated to the presence/absence of viral RNA at 14 days post-challenge (dpc). Moreover, there was an inverse relationship between the viral copy number and aaeDSH expression. DSH silencing resulted in increased viral copy numbers compared to controls at 3 dpc, consistent with a role for aaeDSH in antiviral immunity. Analysis of cis-regulatory regions for the genes of interest revealed clues to upstream regulation of these pathways.

Keywords: anti-viral immunity; cell signaling; transcriptional regulation; vector biology; vector competence.

MeSH terms

  • Aedes*
  • Animals
  • Culex*
  • Mosquito Vectors
  • Rift Valley Fever*
  • Rift Valley fever virus* / genetics