Hormone-related breast cancer is mostly caused by interactions with estrogen receptor alpha (ER-α), which functions as a transcription factor to control the transcription of numerous genes. Flavones are considered a good substrate for the estrogen receptor. Substitution of the N-heterocyclic ring on the flavon structure may potentiate its anticancer effect. A series of flavon derivatives with an N-heteroaryl ring at the 4' position of the B ring of flavon were designed, prepared and evaluated for in vitro breast cancer activity. Binding interactions of the PzFL, PzF, PiFL, PiF and IFL compounds with ER-α were studied by molecular docking. Molecular dynamics simulation studies were carried out in order to determine the stability and convergence of protein-ligand complexes. The compounds were produced by cyclizing chalcones and chalcones were produced by Claisen-Schmidt condensation of substituted aldehydes and 2-hydroxy acetophenone. Breast cancer activity was evaluated by the MTT assay on MCF-7 cell lines. Also, compounds were studied for their estrogen receptor binding potential on the same cell lines. Molecular docking of compounds showed a good docking score. The molecular dynamics of these compounds expressed stable root mean square deviation, stable radius of gyration and low binding energy, suggesting that ligand bound to protein is quite stable in the complex. MTT assay on MCF-7 cell lines reported PzF and IFL were the most active compounds with lower IC50 values. ER-α binding assay of these compounds revealed the presence of binding interactions with receptors. This study offers a viable reference point for the design of flavon-incorporated N-heterocyclic ring derivatives as breast cancer compounds.Communicated by Ramaswamy H. Sarma.
Keywords: Estrogen receptor alpha; MTT assay; Molecular Dynamics; breast cancer; flavon; medicine.