Local H2 release remodels senescence microenvironment for improved repair of injured bone

Nat Commun. 2023 Nov 27;14(1):7783. doi: 10.1038/s41467-023-43618-z.

Abstract

The senescence microenvironment, which causes persistent inflammation and loss of intrinsic regenerative abilities, is a main obstacle to effective tissue repair in elderly individuals. In this work, we find that local H2 supply can remodel the senescence microenvironment by anti-inflammation and anti-senescence effects in various senescent cells from skeletally mature bone. We construct a H2-releasing scaffold which can release high-dosage H2 (911 mL/g, up to 1 week) by electrospraying polyhydroxyalkanoate-encapsulated CaSi2 nanoparticles onto mesoporous bioactive glass. We demonstrate efficient remodeling of the microenvironment and enhanced repair of critical-size bone defects in an aged mouse model. Mechanistically, we reveal that local H2 release alters the microenvironment from pro-inflammation to anti-inflammation by senescent macrophages repolarization and secretome change. We also show that H2 alleviates the progression of aging/injury-superposed senescence, facilitates the recruitment of endogenous cells and the preservation of their regeneration capability, thereby creating a pro-regenerative microenvironment able to support bone defect regeneration.

MeSH terms

  • Aged
  • Aging
  • Animals
  • Bone Regeneration
  • Bone and Bones*
  • Cellular Senescence*
  • Humans
  • Inflammation
  • Mice