Effect of Inevitable Heat Leap on the Conversion Efficiency of Thermoelectric Generators

Phys Rev Lett. 2023 Nov 17;131(20):207001. doi: 10.1103/PhysRevLett.131.207001.

Abstract

Discrepancies between experimental and theoretical results in the study of thermoelectric generators (TEGs) have been a major long-standing problem in thermoelectric technology. In this Letter, we report that, besides interfacial resistance, the inevitable heat leap caused by the Peltier effect is the main factor affecting the conversion efficiency of TEGs. In fact, the heat leap is proven to have an impact of approximately 10% on the conversion efficiency of common TEGs. In addition, we enhance the formula for maximum conversion efficiency with heat leap from the classical expression to allow for the prediction of the performance of advanced materials in TEGs. For the first time, the experimental data from conversion efficiency corresponds exactly to that obtained theoretically by considering both the heat leap and interfacial resistivity.