Hypertension is the most important and well-known risk factor for cardiovascular disease (CVD). Recently, acute organophosphate (OP) poisoning has also been pointed as a CVD risk factor. Despite this evidence, no studies have contrasted the acute toxicosis and cardiovascular (CV) effects of OP poisoning under conditions of normotension and hypertension. In this work, adult male normotensive Wistar and Spontaneously Hypertensive rats (SHR) were intraperitoneally injected with saline or chlorpyrifos (CPF), an OP compound, monitored for acute toxicosis signs and 24-h survival. After poisoning, blood pressure, heart rate and ventilation were recorded, the Bezold-Jarisch Reflex (BJR), the Chemoreflex (CR) were chemically activated, as well as the cardiac autonomic tone (AUT) was assessed. Erythrocyte and brainstem acetylcholinesterase and plasmatic butyrylcholinesterase (BuChE) activities were measured as well as lipid peroxidation, advanced oxidation protein products (AOPP), nitrite/nitrate levels, expression of catalase, TNFα and angiotensin-I converting enzyme (ACE-1) within the brainstem. CPF induced a much more pronounced acute toxicosis and 33 % lethality in SHR. CPF poisoning impaired ventilation in SHR, the BJR reflex responses in Wistar rats, and the chemoreflex tachypneic response in both strains. CPF inhibited activity of cholinesterases in both strains, increased AOPP and nitrite/nitrate levels and expression of TNFα and ACE-1 in the brainstem of Wistar rats. Interestingly, SHR presented a reduced intrinsic BuChE activity, an important bioscavenger. Our findings show that, CPF at sublethal doses in normotensive rats lead to lethality and much more pronounced acute toxicity signs in the SHR. We also showed that cardiorespiratory reflexes were differentially impacted after CPF poisoning in both strains and that the cardiorespiratory disfunction seems to be associated with interference in cholinergic transmission, oxidative stress and inflammation. These results points to an increased susceptibility to acute toxicosis in hypertension, which may impose a significant risk to vulnerable populations.
Keywords: Butyrylcholinesterase; Hypertension; Inflammation; Organophosphate compounds; Oxidative stress; Toxicity tests.
Copyright © 2023. Published by Elsevier B.V.