Could assisted reproductive techniques affect equine fetal membranes and neonatal outcome?

Theriogenology. 2024 Feb:215:125-131. doi: 10.1016/j.theriogenology.2023.11.032. Epub 2023 Dec 3.

Abstract

Embryo transfer (ET) and intracytoplasmic sperm injection (ICSI) are widely used in equine species, but their effects on fetal adnexa and neonates have not been investigated yet. The aim of this study was to retrospectively evaluate whether pregnancies obtained by ET or ICSI could be associated with the presence of macroscopic alterations of fetal membranes (FM) and umbilical cord (UC) and if the use of these techniques could influence neonatal outcome. Sixty-six light breed mares hospitalized at the Veterinary Teaching Hospital, University of Bologna, for attending delivery were included in the study. Mares were divided into Artificial Insemination (AI; 32/66 mares, 48 %), Embryo Transfer (ET; 12/66 mares, 18.2 %) and Intracytoplasmic Sperm Injection (ICSI; 22/66 mares, 33 %) groups. All the medical reports of mares and their foals were reviewed and data about mare, pregnancy, foaling, fetal membranes, umbilical cord and foal were recorded. The occurrence of dystocia resulted statistically different between AI group and ICSI group (p = 0.0066), and between AI group and ET group (p = 0.044). Macroscopic examination of FM revealed alterations in 30/66 mares (46 %): 8/32 in AI (25 %), 7/12 in ET (58 %) and 15/22 in ICSI (68 %) with significant lower incidence in AI compared to ET (p = 0.04) and ICSI (p = 0.002) groups. Alterations reported were chorionic villi hypoplasia, chorioallantois edema, allantois cysts, necrotic areas and greenish-grey concretions. Total length of UC resulted significantly shorter in ICSI group (49 ± 9 cm; p < 0.03) compared to AI (60 ± 17 cm) and ET (59 ± 15 cm). However, there were no differences in the incidence of foals' diseases at birth and in foals' survival among groups (p > 0.05). The results demonstrate that transfer of in vivo or in vitro produced embryos may lead to alterations of placental development, as observed in other species, without being associated with a higher incidence of neonatal morbidity and mortality. Further studies about trophoblast development, FM histological evaluation, and placental gene expression should be carried out to clarify the mechanisms underlying the placental alterations.

Keywords: Assisted reproductive technologies; Embryo transfer; Equine; Fetal membranes; Foal; ICSI; Umbilical cord.

MeSH terms

  • Animals
  • Extraembryonic Membranes
  • Female
  • Horses
  • Hospitals, Animal*
  • Hospitals, Teaching
  • Male
  • Placenta*
  • Pregnancy
  • Reproductive Techniques, Assisted / veterinary
  • Retrospective Studies
  • Semen